
ELLIPTIC CURVE CRYPTOGRAPHY
Public-key cryptography based on elliptic curves is gradually replacing 

RSA thanks to faster implementations and smaller key sizes.
“CLOCK CRYPTOGRAPHY”

Imagine Alice and Bob want to arrive at a shared secret 
point on a “clock”. They pick starting point, the “genera-
tor” (called “g”), and each pick their own secret exponent 
(we’ll call these a and b). We also pick a modulus: 12 
hours for a real clock, but a prime for a crypto-clock.

ELLIPTIC CURVESVS
Di�e-Hellman using points on a circle

“CLOCK CRYPTOGRAPHY”

Base Point
g=3

p=17

We need a base point (a.k.a genera-
tor) whose exponents are uniformly 
distribut around the clock.

• g=1 is bad because 1ⁿ=1
• g=2 is not a primitive root modulo 17
• g=3 is a primitive root modulo 17
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Public Key
a=10

A=310 mod 17

Alice picks a private key a=10 
and raises the generator g=3 
to the power of her private 
key modulo p=17.

The value she arrives on, A=8, 
acts as her public key.
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Shared Secret
b=5

S=Ab mod p

Bob picks a private key b=5,
and wants to derive a shared 
secret with Alice. He raises 
her public key A=8 to the 
power of his private key 5 
modulo p=17. The resulting 
point (”9”) is a shared secret.
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Di�e-Hellman using points on a surreal “clock”
Like clock cryptography, elliptic curve cryptography relies 
on the ideas of a base point (the “generator” in clock 
cryptography) and a prime modulus, but the circle is re-
placed with an algebraic curve which is scattered over 
something known as a prime field (i.e. a finite field)

Elliptic curves work a bit like a 
clock in a Salvador Dali Paint-
ing. Like in the painting, the 
clock is bent and distorted. This 
prevents index calculus attacks 
which work against clock 
cryptography and therefore 
allows for use of smaller keys.

Distorted 
Clocks

Not An
Ellipse

They sound like they should 
look like ellipses, but instead 
they’re symmetrical curves with 
legs stretching off to a point at 
infinity. However, we can still 
add points on them much in the 
same way we can add points 
on a clock.

Finite
Fields

When plotted over a finite field, 
elliptic curves appear to look a 
bit like a random scatter plot. 
However, we can still reason 
about them as curves. They 
also retain the same symmetry 
as their “real” counterparts.
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POINT ARITHMETIC
To replicate the same ideas as clock cryptography using elliptic 
curves, we’ll need a way to add points on an elliptic curve just like 
we’d add points on a circular “clock”. Once we can add points to-
gether, we can build a “scalar multiplication” function which lets us 
combine a base point and secret key (a big number, a.k.a. “scalar”) 
to get a point on the curve which represents a public key. But 
before we can multiply, we first need to be able to add. 

POINT ADDITION OVER REAL NUMBERS
This diagram represents adding the 
points A and B on an elliptic curve. It 
works kind of like a game of billiards 
where the ball always bounces towards 
the x-axis.

We first draw a line from A to B, and 
where that line intersects with the curve, 
we “bounce” towards the x-axis until 
we intersect with the curve again.

The resulting point, C, is considered the 
sum of A and B on the curve. Think of it 
like adding together hours on the crypto 
clock above, and how their combination 
is a point on the elliptic curve.

POINT ADDITION OVER A FINITE FIELD

A

B
The elliptic curves used in cryptography 
are scattered over a prime field, and do 
not look like the curve above, but rather 
a speckling of points. However, underly-
ing these dots is something with the 
same properties as a curve like above.

We are able to add points in a similar 
manner, by drawing a line (with the 
wrapping behavior you see) from A to B, 
continuing until we intersect with anoth-
er point on the curve, then “bouncing” 
vertically as we did before until we 
intersect with the curve again at point C

C

Once we’re able to perform point addition, we can construct a scalar multiplication operation. This 
involves adding a base point to itself repeatedly, where the number of times we do this is “scalar” 
input to the multiplication operation. In practice, this scalar represents an elliptic curve private key.

We now have something that works a lot like clock cryptography above: we can pick a curve and a 
standard base point on that curve. Alice can pick a private scalar value for her secret key, and 
multiply her scalar by the base point to find a point on the curve that represents her public key.
Bob can multiply Alice’s public point by his private scalar to reach a secret point shared with Alice.

SCALAR MULTIPLICATION

CURVE FORMS
There are several different forms of elliptic curves used in cryptog-
raphy, each corresponding to the name of the mathematician who 
discovered it. Different curve forms are used for different applica-
tions, however all curve forms can be converted to the other forms.  

WEIERSTRASS: NIST CURVES AND BRAINPOOL

MONTGOMERY: Curve25519

EDWARDS: Ed25519 AND Ed448-GOLDILOCKS

Weierstrass curves are described by the equation y2 = x3 + 
ax + b (specifically this is the “short” form of the Weier-
strass equation).

These curves were the most popular until recently, stan-
dardized by NIST (P-192, P-224, P-256, P-384, P-521) and 
Brainpool.

However, due to the complexity of the associated field 
arithmetic and its error-prone nature, it has generally lost 
favor. 

Montgomery curves are a newer form described by the 
equation By2 = x3 + Ax2 + x. The most popular is 
Curve25519, used by the “X25519” Diffie-Hellman func-
tion.

Montgomery curves are attractive because of the “ladder” 
method of scalar multiplication, a simple, fast approach 
which is easy to implement correctly (i.e. in constant-time). 
The Montgomery ladder only takes a single coordinate as 
input, eliminating a whole class of attacks present in Wei-
erstrass when points aren’t on the curve.

Edwards curves are the newest form of elliptic curve, and 
are described by the equation x2 + y2 = 1 + dx2y2.

Edwards curves are one of the main focus areas of ECC 
research and standardization. They are particularly inter-
esting when used with variants of the Schnorr digital sig-
nature algorithm.

Ed25519, the Edwards form of Curve25519 for use with 
the EdDSA digital signature algorithm, is the most popular 
Edwards curve today. Ed448-Goldilocks is another Ed-
wards curve that has been receiving recent attention. 


